Chem. Ber. 101, 1902-1909 (1968)

Hermann Libert, Inge Schuster und Leopold Schmid

Protonenresonanzspektroskopische Untersuchungen von Galaktose-Derivaten

Aus der Lehrkanzel für Lebensmittelchemie der Universität Wien

(Eingegangen am 21. November 1967)

Aus Protonenresonanzspektren wurden Konfiguration und Konformation von 11 Galaktose-Derivaten abgeleitet und im Sinne einer C1-Konformation bestimmt. Für ein weiteres Galaktose-Derivat wurde eine abweichende Konformation festgestellt. Zur sicheren Beweisführung war es in mehreren Fällen notwendig, Doppelresonanzversuche auszuführen.

Im Zusammenhang mit Synthesen von Galaktose-Derivaten¹⁾ wurden die NMR-Spektren der Verbindungen 1-13 untersucht.

Dabei erwies sich die Doppelresonanz als wertvolles Hilfsmittel zum Beweis von Konstitution und Konformation. Zur Bestimmung der Konformation von Zuckern aus protonenresonanzspektroskopischen Daten wird die Beziehung von *Karplus*

¹⁾ H. Libert und L. Schmid, Mh. Chem. 98, 1373 (1967).

verwendet $^{2-6)}$. Sie stellt einen Zusammenhang zwischen der Kopplungskonstante benachbarter Protonen und dem Interplanarwinkel in deren Gruppierung $\overset{H}{\to}C - C \overset{H}{\leftarrow}$ her, wobei der Einfluß benachbarter Substituenten mitberücksichtigt wird⁷⁾. Die Kopplungskonstanten (J) und chemischen Verschiebungen für die Verbindungen 1–13 sind in Tab. 1 aufgezeigt.

Tab. 1. Kopplungskonstanten und τ-Werte der chemischen Verschiebung der Ringprotonen, gemessen an einer 15 proz. Lösung der Galaktosederivate in CDCl₃ mit Tetramethylsilan als innerem Standard

		Chemische Verschiebung von							U [Hz]		
Verbin- dung	Ηt	H ²	H3 [p	H ⁴ pm]	H ⁵	H6	<i>J</i> ₁₂	J ₂₃	J_{34}	J_{45}	J_{56}
1	4.46	5.68	5.37	5.61			5.1	2.4	8.0	1.4	_
2 8)	4.40	5.64	5.34	5.71	r		5.0	2.4	8.0	1.4	
3	3.29	4.96	4.56	4.48	5.49	5.69	3.7	10.4	3.0	<1.0	6.4a)
4	3.64	4.54b)	4.73b)	ca	. 5.75	5.75	3.0	10.9	2.5		_ *)
5	3.60	4	.65	4.50	5.72	5.72	1.1		<1.0	<1.0	*)
6	3.55	4.66		4.35	5.83		1.3	*)	<1.0	<1.0	*)
7	4.29b)	4.55b)	4,97b)	5.90	6.10	5.69	7.9	9.7	3.0	1.0	6.1a)
8	4.26 ^{b)}	4.67 ^{b)}	4.88b)	4.57	5.92	5.69	8.6	10.4	3.0	1.1	6.4a)
9	4.25	4.67	4.89	4.44	ca. 5.85		8.6	10.4	3.1	<1.0	*)
10c)	5.55	4.79b)	4,9 4 b)	4.58	6.02	5.81	7.4	10.5	3.0	<1.0	6.4a)
11	5.61	4.78 ^{b)}	4,936)	4.60	6.01	5.68	7.4	10,4	3.0	1.0	6.1a)
12	5.52	4.78 ^{b)}	4.96b)	4.60	6.02	5.69	7.5	10.4	3.0	1.1	6.1a)
13	5.44	4.77b)	4.90b)	4.55	ca. 6.3		7.5	10.3	3.0	<1.0	

*) Nicht bestimmbar.

a) J₅₆ für AB₂-System berechnet.

^{b)} Als AB-System berechnet. Der Unterschied zwischen berechneten und aus dem Spektrum abgelesenen Werten war kleiner als 0.04 ppm.

c) Mori9) nahm das Protonenresonanzspektrum auf, beschrieb jedoch nur die Parameter von H1.

Wie man aus Tab. 1 ersieht, sind in den Verbindungen 3, 4 und 7–13 die Kopplungskonstanten für H² und H³ (J_{23}) groß. (Für 5 und 6 ließen sich die Kopplungskonstanten nicht bestimmen.) Das ist ein Beweis für die *trans*-axiale Stellung beider Protonen. Die kleinen Kopplungen J_{34} in diesen Verbindungen lassen auf eine axialäquatoriale Konformation beider Wasserstoffe schließen und somit auf äquatoriale Anordnung von H⁴. Die kleinen Kopplungskonstanten J_{45} stimmen mit der axialen Stellung von H⁵ überein. Die kleinen Kopplungen J_{12} weisen auf die α -glykosidische Form in den Verbindungen 1–6 hin. Die großen Kopplungskonstanten von H¹ zu H² zeigen die β -Form für die Verbindungen 7 bis 13 an. Die Spektren der Lösungen von 3 bis 13 stehen in gutem Einklang mit der C1-Konformation¹⁰ der Kohlenhydrate.

7) M. Karplus, J. Amer. chem. Soc. 85, 2870 (1963).

- 9) N. Mori, S. Omura und O. Yamamoto, Bull. Soc. chim. Japan 36, 1047 (1963).
- ¹⁰⁾ R. E. Reeves, J. Amer. chem. Soc. 71, 215 (1949).

²⁾ M. Karplus, J. chem. Physics **30**, 11 (1959).

³⁾ *R. J. Abraham, L. D. Hall, L. Hough* und *K. A. McLauchlan, J. chem. Soc.* [London] **1962**, 3699.

⁴⁾ C. D. Jardetsky, J. Amer. chem. Soc. 83, 2919 (1961).

⁵⁾ L. D. Hall, L. Hough, K. A. McLauchlan und K. G. R. Pachler, Chem. and Ind. 1962, 1465.

⁶⁾ L. D. Hall und L. F. Johnson, Tetrahedron [London] 20, 883 (1964).

⁸⁾ C. Cone und L. Hough, Carbohydrate Research 1, 1 (1965).

Ein Vergleich der Zuckerderivate 4,7; 5,8 und 6,9 zeigt, daß ein Konfigurationswechsel am anomeren C-1 praktisch keine Änderung der chemischen Verschiebung am benachbarten Wasserstoff (H²), sondern erst bei H³, H⁴ und H⁵ hervorruft. Diese Änderung ist am stärksten bei H³. Bei den untersuchten Verbindungen sind die Unterschiede in der Lage der Ringprotonen-Signale, getrennt nach α - und β -Galaktose-Derivaten betrachtet, gering, wenn man von der Verschiebung durch verschiedene Substituenten absieht. Sie betragen im Durchschnitt 0.10 ppm. Es liegen aber noch zu wenig Untersuchungen vor, um daraus allgemein gültige Regeln ableiten zu können. Ein Vergleich von 5 und 6, sowie von 8 und 9 zeigt, daß beim Ersatz einer Benzylmercaptocarbonylgruppe durch eine Acetylgruppe das Signal des benachbarten Protons um 0.11 bis 0.16 ppm nach kleineren Feldstärken verschoben wird.

Die Signale der Methylenprotonen aus der Benzylmercaptocarbonylgruppe zeigen ein scharfes, lagebeständiges Singulett. Ähnliches gilt für die Phenylprotonen (Tab. 2). Die Signale der Methylprotonen aus den Acetylgruppen bilden scharfe Singuletts. Es erscheint jedoch bei den geringen Unterschieden in den chemischen Verschiebungen schwierig, aus der Lage dieser Signale allein zwischen einer axialen oder äquatorialen Stellung der Acetylreste zu unterschieden.

Verbin- dung	CH ₂	C ₆ H ₅	CH ₃ CO			
3	5.90	2.67	8.00	7.91	7.87	w • • #
4	1.1000	100.00	7.99	7.93	7.88	7.84
5	5.91	2.70	8.00	8.00	7.87	7.87
6	5.88	2.64	8.14	8.00	8.00	7.85
7	_		7.96	7.92	7.89	7.88
8	5.92	2.70	8.02	7.98	7.92	7.87
9	5.88	2.63	8.13	7.98	7.98	7.89
10			8.03	7.95	7.95	7.85
11	5.90	2.68	8.03	7.96	7.87	
12	5.90	2.68	8.03	7.96	7.87	There is a
13			8.02	7.96	7.85	

Tab. 2. τ-Werte der chemischen Verschiebung der Methylen- und Phenylprotonen der Benzylmercaptocarbonylgruppe sowie der Methylprotonen der Acetylreste

Beschreibung der Spektren

1.2;3.4-Di-O-isopropyliden-6-O-benzylmercaptocarbonyl-a-D-galaktopyranose (1)

Das Stereomodell von 1 zeigt, daß der Pyranring durch die beiden ankondensierten Fünfringe der beiden Isopropylidengruppen unter starker Spannung steht. Deshalb ist eine Deformation und wesentliche Abweichung von der C 1-Sesselform zu erwarten. Da die Konformation von 2 bekannt ist⁸⁾ und 1 dieselben Substituenten am Pyranring trägt (1 und 2 unterscheiden sich nur am C-6), so kann aus einem Vergleich der Kopplungskonstanten der Ringprotonen von der Konformation von 2 auf die von 1 geschlossen werden. Dieser Vergleich ist zulässig, da die Benzylmercaptocarbonylgruppe keinen merkbaren Einfluß auf die Ringprotonen ausübt, wie aus den gleichen chemischen Verschiebungen der Protonen von 1 und 2 zu erkennen ist. Für 2 geben *Cone* und *Hough*⁸⁾ eine Struktur an, die zwischen einer "Skew"- und einer "Bootform" liegt. Nach Tab. 1 sind die Kopplungskonstanten von 1 und 2 fast

2.3.4-Tri-O-acetyl-6-O-benzylmercaptocarbonyl-a-D-galaktopyranosylbromid (3)

Im Spektrum von 3 (Abbild. 1) ist das Dublett bei niederem Feld eindeutig H¹ zuzuordnen. Die Resonanzlagen von H² und H³ wurden durch Entkopplungsexperimente ermittelt. H² bildet mit H³ ein AB-System, das infolge der Kopplung mit H¹ dublettiert ist. Die Feinstruktur von H² zeigt noch eine weitere Aufspaltung, die auf eine "long range"-Kopplung mit H⁴ oder H⁵ hinweist. Das Signal von H³ ergibt infolge Kopplung mit H² und H⁴ ein Quadruplett, teilweise vom Signal von H⁴ überlagert. H⁵ ergibt mit den beiden H⁶ ein AB₂-System. 7 der theoretisch erwarteten 9 Linien sind sichtbar. Aus dem A-Teil des Spektrums ergibt sich klar, daß H⁵ bei niedrigerem Feld als die beiden Methylenprotonen zu finden ist. Dies war auch infolge der geringen Abschirmung des axialen H⁵ durch das Bromatom zu erwarten. Eine Verbreiterung der Signale des A-Teils läßt im Vergleich zu den scharf ausgebildeten Signalen des B₂-Teils erkennen, daß noch eine schwache Kopplung von H⁵ zu einem Ringproton vorliegen dürfte. Die Lage von H⁵ und H⁶ war aus dem Spektrum nach den Regeln der Analyse höherer Ordnung direkt abzulesen, die Kopplungskonstante wurde rechnerisch ermittelt^{11,12}.

Abbild. 1. NMR-Spektrum der Protonen H¹ bis H⁶ von 2.3.4-Tri-O-acetyl-6-O-benzylmercaptocarbonyl-α-D-galaktopyranosylbromid (3) bei 60 MHz in CDCl₃

1.2.3.6-Tetra-O-acetyl- α -D-galaktopyranose (4)

 H^1 bildet infolge der Kopplung mit H^2 ein Dublett. Die Protonen H^2 und H^3 koppeln zu einem AB-System, wobei die Signale von H^2 infolge der Kopplung mit H^1 , die Signale von H^3 infolge der Kopplung mit H^4 noch weiter dublettisch aufgespaltet sind. Die Lagen der Protonen H^1 , H^2 und H^3 wurden durch Entkopplungsexperimente

identisch.

¹¹⁾ H. Suhr, Anwendungen der Kernmagnetischen Resonanz in der organischen Chemie, 1. Aufl., S. 375, Springer Verlag, Berlin 1965.

¹²⁾ K. B. Wiberg und B. J. Nist, The interpretation of NMR spectra, 1. Aufl., S. 11, W. A. Benjamin Inc., New York/Broadway 1962.

bestimmt. H⁴, H⁵ und beide H⁶ sind zu einem wenig strukturierten Signal mit Schwerpunkt bei 5.75 ppm vereinigt. Die starke Verschiebung des äquatorialen H⁴ zu höherem Feld gegenüber den axialen H² und H³ erklärt sich aus der stärkeren Abschirmung von H⁴ durch die Hydroxylgruppe gegenüber den durch Acetylgruppen schwach abgeschirmten H² und H³. Die Hydroxylgruppe am C-4 bildet durch Kopplung mit H⁴ ein Dublett bei 6.53 ppm mit $J_{H^4,OH} = 4.5$ Hz.

1.2.3.6-Tetra-O-acetyl- β -D-galaktopyranose (7)

Das Signal von H¹ ist infolge Kopplung mit H² ein Dublett (Abbild. 2); H² und H³ zeigen je ein Quadruplett, wobei bei H² die beiden Zentrallinien fast zusammenfallen. Da das Verhältnis $J/\delta > 0.1$ war¹¹), erschien es vorteilhaft, die Signale als AB-System zu berechnen. Das Dublett bei 5.90 ppm gehört zufolge unserer Doppelresonanzversuche zu H⁴. Damit war der Beweis erbracht, daß am C-4 eine Hydroxygruppe vorliegt. Das OH-Proton gibt infolge Kopplung mit H⁴ ein Dublett bei 7.02 ppm mit $J_{\rm H4,OH} = 4.7$ Hz. (Infolge des Austausches von D₂O mit der OH-Gruppe in Abbild. 2 nicht sichtbar.) H⁵ bildet mit den beiden H⁶ ein durch 8 Linien klar erkennbares AB₂-System.

Abbild. 2. NMR-Spektrum der Protonen H¹ bis H⁶ von 1.2.3.6-Tetra-O-acetyl-β-D-galaktopyranose (7) bei 60 MHz in CDCl₃, gesättigt mit D₂O

1.2.3.4-Tetra-O-acetyl-6-O-benzylmercaptocarbonyl- α -D-galaktopyranose (5)

Die Signale der Ringprotonen von 5 zeigen Singuletts ohne scharfe Spitze. Da die Signale von H² und H³ sowie von H⁵ und den beiden H⁶ zu einem zusammenfallen, sind J_{23} und J_{56} unbestimmbar.

1.2.3.4-Tetra-O-acetyl-6-O-benzylmercaptocarbonyl- β -D-galaktopyranose (8)

Das Dublett bei niederem Feld wird von H¹ gebildet. Bei Dehnung des Spektrums spalten sich die beiden Linien noch geringfügig weiter zu einem Quadruplett auf. Daraus und aus den Quadrupletts von H² und H³ kann man erkennen, daß hier ein Grenzfall eines ABX-Systems vorliegt, bei welchem $J_{AX} \approx 0$. Der X-Teil des Spektrums — gebildet von H¹ — ergibt die Kopplungskonstante als Abstand, die chemische Verschiebung als Mittelwert der beiden äußeren Linien. Lemieux und Stevens¹³ konnten bei einem ähnlichen Spektrum, dem der Penta-O-acetyl- β -D-

¹³⁾ R. U. Lemieux und J. D. Stevens, Canad. J. Chem. 43, 2062 (1965).

galaktopyranose, zeigen, daß das Quadruplett von H¹ von einer "virtual long range"-Kopplung¹⁴⁾, einem Effekt höherer Ordnung, stammt und keineswegs durch direkte "long range"-Kopplung mit Ringprotonen zustande kommt. Die Parameter für H² und H³ ergeben sich aus dem AB-Teil des Spektrums. H⁴ bildet ein Quadruplett, dessen kleine Kopplungskonstanten zu H³ und H⁵ eine Analyse erster Ordnung ermöglichen. H⁵ zeigt gemeinsam mit den beiden H⁶ ein Spektrum höherer Ordnung. Die Analyse als AB₂-System ergab die in Tab. 1 angeführten Parameter.

1.2.3.6-Tetra-O-acetyl-4-O-benzylmercaptocarbonyl- α -D-galaktopyranose (6)

Das Spektrum zeigt große Ähnlichkeit mit dem von 5. Abweichend von 5 ist nur die Verschiebung von H⁴ nach kleinerer Feldstärke und von H⁶ nach höherer Feldstärke, die aus der veränderten Anordnung von Benzylmercaptocarbonyl- und Acetylrest folgt. Die Kopplung von H⁵ und H⁶ ergibt ein Multiplett, mit Zentrum bei 5.8 ppm. Aus dem Multiplett ragt das Signal der beiden H⁶ als scharfe Linie bei 5.83 ppm hervor.

1.2.3.6-Tetra-O-acetyl-4-O-benzylmercaptocarbonyl- β -D-galaktopyranose (9)

Das Spektrum ist dem von 8 ähnlich. Die Signale der Ringprotonen zeigen dieselben Systeme wie 8. Doch ist gegenüber 8 das Quadruplett von H⁴ um 0.13 ppm nach tieferem Feld und das Signal der beiden H⁶ um 0.16 ppm nach höherem Feld verschoben. Daraus folgt, daß bei 9 die Benzylmercaptocarbonylgruppe am C-4 und ein Acetylrest am C-6 vorliegt, während es bei 8 umgekehrt ist. Die Resonanzlagen von H⁵ und von den beiden H⁶ sind in 9 identisch.

Methyl-2.3.4.6-tetra-O-acetyl- β -D-galaktopyranosid (10)

 H^1 bildet ein Quadruplett mit einer großen Kopplung zu H^2 , wogegen die kleine Kopplungskonstante ($J_{15} = 1.1$ Hz) auch im Signal von H^5 auftritt (Abbild. 3). Das deutet auf eine "long range"-Kopplung zwischen H^1 und H^5 . Die Signale von H^2 und H^3 ergeben aus Kopplungen zu H^1 und H^4 zwei überlagerte Quadrupletts, deren chemische Verschiebungen für ein dublettiertes AB-System berechnet wurden. Das äquatoriale H^4 bildet das Signal bei niedrigstem Feld, da das axiale H^1 nach höherer Feldstärke verschoben ist. H^5 und die beiden H^6 zeigen ein gut ausgeprägtes AB₂-System, dessen A-Teil dublettisch aufgespalten ist. Das Signal der Methoxylprotonen erscheint bei 6.48 ppm.

Methyl-2.3.4-*tri*-O-acetyl-6-O-benzylmercaptocarbonyl- β -D-galaktopyranosid (11)

Das Spektrum der Ringprotonen stimmt fast überein mit dem von 10. Eine geringfügige Abweichung zeigte nur das Signal der beiden H⁶, die durch die benachbarte Benzylmercaptocarbonylgruppe um 0.13 ppm nach tieferem Feld verschoben sind. Das Methoxylsignal liegt bei 6.51 ppm.

\ddot{A} thyl-2.3.4-tri-O-acetyl-6-O-benzylmercaptocarbonyl- β -D-galaktopyranosid (12)

Die Signale der Ringprotonen haben fast die gleiche Lage wie bei 11. Ein etwas abweichendes Verhalten zeigt nur H¹, dessen Signal unter dem Einfluß des Äthoxyls (anstelle des Methoxyls bei 11) um 0.09 ppm nach kleinerer Feldstärke verschoben ist.

¹⁴⁾ J. I. Musher und E. J. Corey, Tetrahedron [London] 18, 791 (1962).

Abbild. 3. NMR-Spektrum der Protonen H¹ bis H⁶ von Methyl-2.3.4.6-Tetra-O-acetyl-β-Dgalaktopyranosid (10) bei 60 MHz in CDCl₃

Äthyl-2.3.4-tri-O-acetyl- β -D-galaktopyranosid (13)

Die Ringprotonen zeigen ein ähnliches Spektrum wie 11 und 12. H^5 und die beiden H^6 bilden mit den Methylenprotonen der Äthoxygruppe überlagerte Multipletts im Bereich von 5.87 – 6.64 ppm. Daraus ragt ein scharfes Signal bei 6.28 ppm, das zu den beiden H^6 gehört. Die Verschiebung der beiden H^6 in Richtung größerer Feldstärke im Vergleich zu den bisher besprochenen Verbindungen erklärt sich aus der Nachbarschaft der Hydroxygruppe im Gegensatz zu den Estergruppierungen in 11 und 12. Die Hydroxygruppe zeigt ein Singulett bei 7.20 ppm.

Dem Österreichischen Forschungsrat danken wir für die Bereitstellung finanzieller Mittel.

Beschreibung der Versuche

Die Verbindungen 1 und 3 bis 13 wurden nach I. c.¹⁾, 2 nach I. c.¹⁵⁾ dargestellt. Die NMR-Aufnahmen erfolgten an 15 proz. Lösungen der Substanzen in CDCl₃ mit einem Varian A 60 A-Spektrometer bei seiner Betriebstemperatur. Die chemischen Verschiebungen und Kopplungskonstanten wurden auf die übliche Weise dem Spektrum entnommen; auf berechnete Werte wird jeweils hingewiesen. Alle Signale sind auf Tetramethylsilan (TMS) als inneren Standard bezogen. Bei den Entkopplungsversuchen ergab ein Zusatz von D₂O meist bessere Auflösung. Die Entkopplungsversuche wurden nach der "Fieldsweep"-Methode ausgeführt. Der Zusatz von Benzol zu den CDCl₃-Lösungen bewirkte in vielen Fällen eine Änderung der chemischen Verschiebung der Protonen und erleichterte somit die Analyse der Spektren.

2.3.4-Tri-O-acetyl-6-O-benzylmercaptocarbonyl-α-D-galaktopyranosylbromid (3): Das Dublett bei 3.29 ppm wird von H¹ hervorgerufen. Bestrahlen an der Stelle des Multipletts bei 4.96 ppm

¹⁵⁾ H. von Gruenenberg, C. Bredt und W. Freudenberg, J. Amer. chem. Soc. 60, 1507 (1938).

verwandelt das Dublett von H¹ in ein Singulett. Strahlt man bei 4.48 ppm (H⁴) ein, so vereinfacht sich das Quadruplett von H³ (4.56 ppm) zu einem Dublett. Die τ -Werte des AB₂-Systems von H⁵ und den beiden H⁶ sind für den A-Teil: 5.57, 5.49, 5.44 und 5.37, für den B₂-Teil: 5.78, 5.73, 5.66 und 5.55. Aus $V_{\rm A} - V_{\rm B} = 12.3$ Hz und $J_{\rm AB}/V_{\rm A} - V_{\rm B} = 0.52^{11,12}$ folgt $J_{56} = 6.4$ Hz.

1.2.3.6-Tetra-O-acetyl- α -D-galaktopyranose (4): Das Signal bei 3.64 ppm wird wie üblich H¹ zugeordnet. Einstrahlen bei H¹ vereinfacht das Quadruplett bei 4.54 ppm (H²) zu einem Dublett. H³ wird auf Grund der großen Kopplung von 10.9 Hz bei 4.73 ppm gefunden. Strahlt man bei 5.8 ppm (H⁴) ein, so verändert sich das Quadruplett von H³ zu einem Dublett. Die CDCl₃-Lösung ließ die Lage des Hydroxylprotons erkennen.

1.2.3.6-Tetra-O-acetyl-β-D-galaktopyranose (7): Das Signal bei niederem Feld wird H¹ zugeordnet. H² und H³ ergaben sich aus den jeweils übereinstimmenden Kopplungskonstanten, wobei Verdünnung der CDCl₃-Lösung mit gleichem Volumen Benzol zu einer besseren Auftrennung der beiden Signalgruppen führte. Bestrahlen an der Stelle des Quadrupletts von H³ veränderte das Dublett bei 5.90 ppm (H⁴) zu einem Singulett. Die τ -Werte des AB-Systems von H⁵ und der beiden H⁶ ergaben sich im A-Teil zu 6.21, 6.12, 6.10, 6.01, im B₂-Teil zu 5.74, 5.71, 5.64, 5.60. Das entspricht einem $J_{AB}/V_A - V_B$ -Verhältnis von 0.25 und damit einer Kopplungskonstanten von 6.1 Hz. Das Hydroxyproton wurde wie bei **4** lokalisiert.

1.2.3.4-Tetra-O-acetyl-6-O-benzylmercaptocarbonyl- β -D-galaktopyranose (8): Zusatz von Benzol zur CDCl₃-Lösung (1:1) verbesserte die Auflösung der Signale der Ringprotonen. Das AB₂-System von H⁵ und der beiden H⁶ zeigt folgende τ -Werte: A-Teil: 6.05, 5.97, 5.92, 5.84, B₂-Teil: 5.75, 5.75, 5.65, 5.62. Durch Vergleich mit tabellierten Spektren^{11,12} folgt $J_{AB}/V_A - V_B = 0.49$; $J_{56} = 6.4$ Hz.

Methyl-2.3.4.6-tetra-O-acetyl- β -D-galaktopyranosid (10): Die Signale für H¹, H², H³ und H⁴ konnten erst nach Zusatz von Benzol zur CDCl₃-Lösung (1:1) zugeordnet werden. An dieser Lösung wurden auch die Kopplungskonstanten gemessen; die chemischen Verschiebungen wurden in CDCl₃-Lösung bestimmt. Die τ -Werte des AB₂-Systems von H⁵ und den beiden H⁶ betragen im A-Teil: 6.15, 6.07, 6.02 und 5.94, im B₂-Teil: 5.85, 5.85, 5.77 und 5.72. Daraus folgt $J_{AB}/V_A - V_B = 0.50$ und $J_{56} = 6.4$ Hz.

Methyl-2.3.4-tri-O-acetyl-6-O-benzylmercaptocarbonyl-β-D-galaktopyranosid (11): Die Bestimmung der Parameter von H¹, H², H³ und H⁴ erfolgte wie bei 10. Die τ -Werte des AB₂-Systems von H⁵ und den beiden H⁶ ergeben sich im A-Teil zu 6.13, 6.04, 6.01 und 5.93, im B₂-Teil zu 5.72, 5.72, 6.63 und 5.60. Daraus folgt $J_{AB}/V_A - V_B = 0.30$; $J_{56} = 6.1$ Hz.

Äthyl-2.3.4-tri-O-acetyl-6-O-benzylmercaptocarbonyl- β -D-galaktopyranosid (12): H¹, H², H³ und H⁴ wurden wie bei 10 und 11 zugeordnet. Die Linien des AB₂-Systems von H⁵ und von den beiden H⁶ stimmen mit denen von 11 praktisch überein.

[509/67]